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Abstract. A novel filtering approach is presented in denoising in the color images contaminated by mixture of additive-impulsive 
noises. Novel framework consists of three principal stages: impulsive noise suppression that is performed detecting pixels corrupted 
by impulsive noise and then,  filtering found spikes by a variant of median filter; during second stage, original additive noise 
suppression filter is employed in Wavelet transform domain via a sparse representation and 3D-filtering; finally, non- desirable 
effects obtained in an image during previous stages are processed to correct fine details. In case of multiplicative noise suppression, 
the designed denoising scheme uses  3D homomorphic sparse processing stage and post-filtering procedure. Evaluation of novel 
approach in denoising complex distortions has been performed using objective criteria (PSNR and SSIM measures) and subjective 
perception via human visual system confirming their better performance in comparison with state-of-the- art techniques. 
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1 Introduction  

The fundamental problem in image processing consists 
in reducing a noise while preserving the most of image 
features. The presence of random digital noise in an 
image reduces the performance of different systems such 
as pattern recognition, diagnostics, object control, etc. 
Principal difficulties in any filtering technique are that a 
processing procedure should perform suppression of 
noise, meanwhile the fine details, edges, and texture 
properties can be unchanged. The complex and changing 
structure of real images does not allow the corrupted 
image details to be efficiently identified and filtered. If 
fine details of an image are distorted, these drawbacks 
could cause misinterpretation during medical diagnosis, 
incorrect classification of objects in the satellite images, 
erroneous detection of obstacles by autonomous robots, 
errors in telemedicine applications, etc. [1]. During 
image acquisition, additive or multiplicative noise can be 
present, and during its transmission or acquisition, 
further contamination may be caused by impulsive noise. 
Images may be corrupted by interference and 
imperfections in the channel or the reception equipment. 
Additionally, digital cameras can introduce noise, 
electronic interference or errors in data acquisition [2]. 
The most common type of noise additive one is usually 
assumed to be Gaussian random process nad(i,j) where all 
pixels in an image are corrupted. Other type of noise is 
multiplicative (speckle) one that is usual for coherent 
sensors such as ultrasound or radar sensors [3]. 
The most common model of mixed noise used is a 
combination of additive noise, usually, Gaussian and 
random impulsive noise nim(i,j). The corrupted image 

E(i,j) in such type of noises can be represented as 
follows: 
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In case of multiplicative noise ),( ji , the corrupted 
image E(i,j ) is presented as folllows:
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2 Related Works  

The restoration of corrupted images by a mixture of 
different type of noises requires novel approaches, 
because a lot of existing techniques developed for 
additive noise suppression are not capable to eliminate 
the artefacts produced by impulsive noise or other type 
noise. There are several filtering techniques for Gaussian 
additive noise elimination where among them, there exist 
different techniques based on search of a group of pixels 
called as reference block. Jain [4] proposed a technique 
based on WT that is applied to some patches with a 
chosen degree of similarity. Filtering is performed for 
each sub-band wavelet by obtaining a threshold that 
adapts to the conditions of each a neighborhood. Lukin 
[5] proposed an adaptive filter based on an assessment of 
the image locality via filtering by DCT to obtain a 
neighborhood and to estimate the local variance, then 
using it to distinguish homogeneous and heterogeneous 
areas. Bahoura [6] proposed a signal denoising technique 
based on wavelet with a thresholding function, which is 
applied to the wavelet coefficients. Jin [7] introduced 
new non-local operators to interpret the filter as a 
regularization of the Dirichlet’s functional. Smoothing 
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and fidelity are derived from the same geometric 
principle. Buades [8] proposed a method for measuring 
noise and comparing performance of the methods in 
removing image noise. Then, the authors used a new 
algorithm based on NLM for a nonlocal average of all 
pixels in an image. Dabov [9] presented the video 
filtering method VBM3D based on a highly dispersed 
signal in the local domain of a 3D transform. This 
method uses a 3D array called group that is applied to 
store all blocks similar to the block being processed. The 
grouping is performed by searching for similar blocks in 
the space-time domain. For each a 3D group, filtering 
and shrinkage is performed in the 3D transform domain. 
In our previous study [10], we performed similar to 
BM3D framework (SM3D-DCTNS) using DCT and 
block matching procedures that demonstrated superior 
performance in comparison with NML and BM3D 
techniques. One drawback appears in this kind of 
filtering is that the found similarity measure may cause 
the impulses that can be considered as fine details, so the 
corrupted pixel is not filtered. There are several papers 
that use ideas of fuzzy logic theory in denoising and can 
suppress additive or impulsive noise in separated form 
[11] [12] [13]. For example, in our previous study [12], 
two frameworks (FMANS 2 and FMANS H) have been 
designed to suppress additive Gaussian noise but any of 
these techniques has no ability in filtering complex 
(impulsive-additive) noise. 
Filters applied in denosing for additive noise do not 
perform a correct restoration of pixels contaminated by 
impulsive spikes, so it is necessary to filter or to restore 
such pixels before denosing the pixels that are 
contaminated by additive noise. There are different 
techniques for the elimination of impulsive noise, where 
the detection of noisy pixels or random impulses is 
performed in the first stage, following these spikes 
should be suppressed during filtering process. Different 
techniques for the elimination of impulsive noise are 
mostly based on use of kind of median filter or their 
multichannel modification such as Vector Median Filter 
[14], Switching Median Filter [15], etc. Other techniques 
are based on the detection of contaminated pixels in the 
first step, and then, a filtering process should be only 
applied to corrupted pixels. Xu [16] proposed an 
efficient filter for universal impulse noise removal. This 
method consists of two stages: impulse detection and 
filtering. For detection, a robust local image statistic, 
called the extremum compression rank-order absolute 
difference (ECROAD), is designed to detect impulse 
noise in an image. For filtering, the universal impulse 
noise filter is proposed by combining the ECROAD with 
the NLM. Nasri [17] presented an effective filtering 
method to remove impulse noise from images. In this 
two-stage method, the detected noise-free pixels remain 
unchanged. Then, Gaussian filter with adaptive variances 
according to the image noise level is applied in 
denoising stage. Veerakumar [18] introduced an adaptive 
radial basis function interpolation-based impulse noise 
removal algorithm. This approach consists of two stages: 
noisy pixel detection and correction. The radial basis 
function interpolation scheme is used to estimate the 
unknown noisy pixel value from the noise-free known 

neighboring pixel values. For both noisy pixel detection 
and correction, a center sliding window is considered at 
each a pixel location.  
There are several novel techniques that can remove a 
mixture of noises, usually additive noise and impulsive 
noise. Most of these techniques perform the filtering of 
impulsive noise in a first stage, and the filtering of 
additive noise is applied during second stage. In [19, 20], 
suppression techniques for mixed noise (additive 
Gaussian and impulsive saturated) are proposed. In [19], 
the impulsive noise detector is based on the differences 
between a central pixel and its neighbor pixels. When a 
contaminated pixel is detected, it is replaced by a mean 
of neighbors. Filtering of additive Gaussian noise is 
performed using a bilateral filter (BF), in which the BF 
parameters are adjusted. Jiang [21] proposed a method to 
suppress mixed noise called weighted encoding with 
sparse nonlocal regularization (WESNR). The WESNR 
algorithm does not use a detector of impulses as an 
individual stage, so each corrupted block is encoded over 
a pre-learned dictionary to remove the impulse noise and 
additive white Gaussian noise simultaneously in a soft 
impulse pixel detection manner. The suppression of 
mixed noise is performed by weighting the encoding 
residual in such a way that the final encoding residual 
tends to follow a Gaussian distribution. The weighted 
encoding and sparse nonlocal regularization are unified 
into a variational framework. 
In present study, novel approach in suppressing a 
additive-impulsive mixture noise and multiplicative-
additive mixture noise is developed. The suppression of 
mixed additive-impulsive noise is divided in several 
stages: the suppression of impulsive noise is performed 
using a detector of impulses and a variant of median 
filter; the additive noise suppression is performed on 
wavelet domain that demonstrates better quality, 
employing the advantage of sparse representation; and, 
finally, in order to improve the quality of the image, 
obtained during the previous suppression stages, a post-
processing stage should be applied.  
In case of multiplicative-additive mixture noise, the 
initial stage consists of homomorphic transformation of 
input image, following sparse framework in denoising, 
and final postprocessing stage.  

 

3 Proposed Filtering Approach  

The proposed framework to filter color image corrupted 
by impulsive-additive noise using Sparse Representation 
and 3D Wavelet Color Filtering (FMN-3DWT-C) 
consists of three stages: a) impulse noise detection and 
filtering, b) additive noise filtering, and c) post-
processing procedure (Fig. 1). 
In developed impulsive noise suppression stage, the 
detection and restoring of pixels contaminated by 
impulsive noise are performed. 
 
3.1.  Fuzzy Impulsive Noise Detector 
 
 Detection of noisy pixels is a very important stage 
because a poor detection could generate undesirable 
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effects, such as: blurring in areas of fine details or 
texture distortion. 
The detection process in current framework is based on 
gradient value and fuzzy sets theory. In this stage, all 
pixels are analyzed using a vicinity of 3x3 pixels, where 
several neighbors are assigned to a chosen direction 
(Northwest (NW), North (N), Northeast (NE), East (E), 
Southeast (SE), South (S), Southwest (SW), West (W)). 
The basic gradient value in direction (k, l) of a central 
pixel in the position (i, j) is defined as follows: 
 

),1,0 ,1(, ;j)E(i,  - ),(),(),(  lkljkiEjiElk

                                                                                    (2) 
where (k, l) belong to one of eight directions. It is 
necessary to distinguish between corrupted and edge 
pixels, where two values are defined that are known as 

basic ),( jiER
 and related gradients ),( jiER

 and 

),( jiER  . The related gradients are calculated using 

neighboring pixels that form a right angle in the same 

direction as the basic gradient. We use fuzzy logic sets 
large(L), small (S), big negative (BN) и big positive (BP) 
in case of the trapezoidal membership functions for S 
and L sets: 

                     ,    

 or       ,                           0

 or        ,  1

S    ,  or       ,                           1

),(






















cf

ccf
cc

c

сf

S                                    

L    , or       ,                           1

 or        ,  

  or       ,                           0

),(





















cf

ccf
cc

c
cf

L

, 

(3)

 

and for BN and BP sets: 
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Fig. 1. Block-diagram of proposed method FMN-3DWT-C. 

 

The next step consists of introducing a fuzzy gradient in 
each a direction to distinguish between a noisy pixel and 
a noise-free pixel. The fuzzy gradient is defined 
according to the Fuzzy Rule 1 as follows: 

IF [ ),( jiAR
 
is L AND ),( jiAR

 
is S OR ),( jiAR

 
is 

L AND ),( jiAR 
 

is S OR ),( jiAR  is BP AND 

),( jiAR  AND are BN OR ),( jiAR  is BN AND 

),( jiAR  AND  ),( jiAR   are BP] THEN Fuzzy 

Gradient ),( jiAF
R  is Large                     .  (4) 

In order to determine whether a central pixel is 
contaminated by impulsive noise, the following fuzzy 
rule is used:  
IF most of the eight ),( jiAF

R  are L THEN A(i,j) is 

Noisy.                                                                           (5) 

In particular, if four or more fuzzy gradients are large, 

then the analyzed pixel is tagged as a noisy pixel. The 

detection of random spikes is performed on each a pixel. 

If a pixel is detected as a corrupted one, then their 

position is tagged, thus generating an image as a map of 

the corrupted pixels. 

 
 
 
 
3.2. Restoration of pixels corrupted by impulsive 
noise  
 
The restoration of corrupted pixels is performed for each 
channel RGB in independent form. Let explain below 
the process for channel R. Once that all impulses in the 
image are identified and tagged, the next step consists of 
replacing the noisy pixels using filtering technique. In 
the filtering of pixels contaminated by impulsive noise, 
the information generated by the impulsive noise 
detector is used. Each a pixel is analyzed to know if a 
noisy pixel exists in its position. In the detection of 
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impulses, it cannot be avoided that some pixels that 
belong to edges and/or textures, are detected as noisy 
pixels. So, it is necessary to include additional 
information to correct this fact.  
The edge extraction techniques of an image are based in 
changes of intensity within a neighborhood, so that the 
impulses could be detected as a edge. In order to extract 
the edges of an image contaminated by mixed noise, two 
steps have been proposed: 
1) Blurring the image contaminated by mixed noise. 
2) Edges extraction. 
Firstly, the blurring of noisy image is performed using a 
median filter with a vicinity of 5x5 pixels. Finally, the 
edges extraction is performed using Canny algoritm.  
If the position (i, j) is found a tagged as a noisy pixel, 
following a neighborhood W of size 3x3 pixels is taken. 
Then, the restoration of the pixel is performed 
considering whether the pixel belongs to an edge or not. 
 
First case. The pixel does not belong to an edge.  
The restoration stage of corrupted pixel is based on the 
Vector Median Filter (VMF) proposed by Astola [22], 
and this filter is only applied to those pixels that are 
marked as noisy ones. Firstly, the sum of absolute 
differences (SAD(i. j)) of each a pixel with its neighbors 
is performed. The value SAD(, j) is defined as: 
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where (i, j) is the position of pixel, and (k, l) are the 
positions of their neighbors. From this process, nine 
values are obtained, where the pixel among them in 
position (r,s) that gives min ),( jiSAD

 

should be 

selected as the estimation Eno_edge(i, j)= E(r, s). It should 
be mentioned that the values tagged as noisy pixels in 
the neighborhood are not considered in the sum of 
absolute differences.  
 
Second case. The pixel belongs to an edge. 
When a pixel belongs to an edge, it does not imply that it 
is not contaminated by impulsive noise, so we obtain a 
first approximation E1(i, j), considering that the pixel 
does not belong to an edge. Next, a vicinity Eblur(i, j) 
from the blur image is taken and a second approximation 
is obtained as follows: E2(i, j)=median Eblur(i, j)}, and 
finally, the restoration of pixel is defined as :  
[E1(i, j) + E2(i, j)]/2 . 
 
 
3.3. Additive Noise Filtering  
  
The additive noise filtering is based on sparse 
representation and 3D filtering on WT domain. The 
techniques that use sparse representation to suppress 
additive noise are based in the behavior of noise in the 
domain of chosen transform. Further, the filtering based 
on shrinkage method allows reducing the additive noise, 
whereas the edges and fine details suffer less 
deterioration when such reconstruction is performed 
[23]. 

The proposed additive noise filtering stage is performed 
on WT domain and can be divided in two stages: 1) 
grouping using block-matching, and 2) 3D-filtering.  
The WT produces four sub-bands: LL, LH, HL, and HH. 
Next, the additive noise suppression is performed to each 
a sub-band in independent form. The additive noise 
suppression stage is performed in WT domain where 
there are applied two processing procedures:  
1) Grouping using block-matching, and 2) 3D-filtering. 
The figure 2 shows the process of additive denoising on 
WT domain.  
 
Grouping via block-matching: The procedure of block 
matching is performed using the three color channels, 
the highly similar blocks to a reference block should be 
located, and these ones are stored in a group. It is 
necessary to note that the blocks are 2D arrays and the 
grouping process [9] is formed as a 3D array. 
 

 
Fig. 2. Filtering process in each sub-band WT. 
 
The similarity degree between two blocks is obtained 
employing a similarity measure. If the similarity is 
higher than a chosen threshold, the element of a block 
can be considered as similar one, and it enters to a 
current group. In this framework, the sum absolute 
difference (SAD) is used as matching criterion, which is 
written as follows: 

 
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where M and N are the image dimensions, and E(p, q) is 
the reference block in the position (p, q). Let denote the 
reference block as E(p; q), and then all similar blocks are 
Er(p; q).  
 
3D filtering: The designed 3D filtering uses two 
processes: thresholding and shrinkage. In the 
thresholding, all wavelet coefficients that belong to each 
a block of the 3D array are compared with a fixed 
threshold (TW). If the absolute value of a coefficient is 
less than the threshold, this coefficient is replaced with 
the zero value, as follows: 











WW_3D

W_3D3_
3_

Tr)q,(p,E    ,0

),,(E   ),,,(
),,(ˆ WDW

DW
TrqprqpE

rqpE (8) 

In the next step, there is performed the shrinkage of the 
3D array, i.e., from the 3D array, there should be obtain 
an approximation of the 2D array. This can be performed 
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using an averaging filter with chosen weights that 
depend on similarity measure, as follows: 
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Finally, in order to obtain a filtered image E(i,j), the 
additive noise filtering is applied to each RGB channel 
of an image. 
 
 
3.4. Post-processing  
During previous filtering stages, there are produced 
some undesirable artefacts, so in the filtered image such 
artefacts should be corrected. A Wiener filter [24]  
 

                                                                  ,              , (10) 

where   is local mean, 2
W  is the local variance, and  

2  is the average of all the local estimated variances, 
employed to increase the quality of filtered image.  
 
3.5. Denoising in case of multiplicative distortion 
 
In case of multiplicative noise the model of signal 
degradation defined in form of noise (speckle) and image 
multiplication [1-3] as presented in (1.1a). So, the 
proposed framework uses similar spase approach 
explained in Fig. 3 where designed framework named as 
Multiplicative Denoising Sparse Representation using 
DCT (F-MNSR-DCT) consists of two stages: 1) 3D 
homomorphic sparse filter, and 2) post-processing 
procedure. 

 
Fig. 3. Block-diagram of proposed technique used for multiplicative denoising via sparse representation  (F-MNSR-DCT). 

 

4 Experimental Results  

The experimental results were performed using a set of 
100 color test images proposed by Malinski [25]. 
Mentioned set contains images with different texture and 
fine details structure that can guarantee robustness of 
investigating techniques. 
 
 
4.1. Evaluation Criteria  
 

The evaluation criteria used to characterize the 
performance are the peak signal-to-noise ratio (PSNR) 
and structural similarity index measure (SSIM). The 
PSNR is an objective criterion measurement and is 
defined as follows:  
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The SSIM measure tha captures better the human 
perception has been introduced in [26] as:  
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In (11), E  and Ê  determine local means for E  and 

Ê , accordingly; E
2  and Ê

2  are local dispersions 

for E  and Ê , and EE ˆ,  is local cross correlation 

function for E  and Ê ; constants 1nC  
 
4.2. Efficiency of the filter FMN-3DWT-C  
The experimental results (PSNR, SSIM) for all test 
images are shown in Table 1. Additionally, we use the 
subjective visual perception presenting filtered images 
and their error images for the best state-of-the-art filters 
to compare their noise suppression. 

 

Table 1. Average PSNR and SSIM Values 

PSNR 
  / 
%   

10 20 30 40 50 

10 34.33     33.52       31.95     28.51      24.30 
20 29.43     28.76       27.43     25.21      22.12 
30 25.61     25.15       24.16     22.60      20.29 
40 23.17     22.72       21.94     20.66      18.80 
50 21.36    20.95       20.27     19.14      17.54 
 
SSIM 
  / 
%   

10 20 30 40 50 

10 0.9873    0.9844     0.9745   0.9365    0.8592 
20 0.9428    0.9343     0.9119   0.8699    0.7958 
30 0.8754    0.8648     0.8416   0.8008    0.7335 
40 0.8192    0.8054     0.7795   0.7394    0.6733 
50 0.7682    0.7535     0.7262   0.6832    0.6204 

 

4.3. Comparison with state-of-the-art techniques  
There are different techniques for mixed noise 
suppression. In order to evaluate the proposed method, 
we compare it with the better existing state-of-the-art 
techniques: Wiener [24], Bilateral [19], NLM [8] and 
WESNR [21]. The filter Wiener, Bilateral and NLM 
were designed to decrease the additive noise only, so it is 
necessary to perform, previously, the filtering of 
impulsive noise to compare with our technique. 

In figures 4-6, there are shown the visual results obtained 
to images: pic002, pic029, and pic059 corrupted by 
impulsive and additive noises with different values of % 
and  , respectively. 

    

a) Original                          b) Noisy 

 

    
  c) Bilateral.    d) Bilateral error      e) NLM           f) NLM error 
 

 
g) WESNR       h) WESNR error  i)FMN-3DWTC. j) FMN-3DWTC   
                                                                                           Error. 
Fig. 4. Filtered and Inverted error images (amplified by 5) for 
the image pic002 applying Bilateral, NLM, WESNR and FMN-

3DWT-C techniques for a mixture of noises: additive ( = 
10) and random impulsive (% = 10). 
 

   
a) Original                                    b) Noisy 

 

 
(c) Bilateral.        (d) Bilateral Error     (e) NLM.      (f) NLM Error. 
 

 
(g) WESNR.    (h) WESNR Error (i) FMN-3DWTC (j) FMN-3DWTC  
                                                                                                        Error  
Fig. 5. Filtered and Inverted error images (amplified by 3) for 
the image pic029 applying Bilateral, NLM, WESNR and FMN-
3DWT-C techniques for a mixture of noises: additive ( = 
30) and random impulsive (% = 30). 
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Fig.6. Filetered and Inverted error images (amplified by 2) for 
the image pic059 applying Bilateral, Wiener, NLM, WESNR 
and FMN-3DWT  in mixture of noises: additive  ( = 40) and 
random impulsive (% = 40). 

The values for PSNR and SSIM criteria in case of using 
different filters for images pic002, pic029, pic059, 
pic084 are shown in table 2. 
 
In case of multiplicative noise, the designed 
multiplicative denoising F-MNSR-DCT has 
demonstrated better performance in comparison with 
commonly used filtering techniques : Lee, Frost, Kuan 
and, anisotropic diffusion. Table 3 presents PSNR and 
SSIM values obtained in denoising of multiplicative 
distortions where novel filter appears demonstrate better 
performence.  
 
Subjective visual perception results via analysis of 
filtered images and their error images for the state-of-the 
art filters and proposed F-MNSR-DCT are exposed in 
Fig. 7.  
 
 
 
 
 
 
Table 2. The PSNR and SSIM values obtained for images 
pic002 (10; 10), pic029 (30; 30), pic059 (40; 40), and pic084 
(50; 50). 
 

PSNR 
Image Bilater

al 
Wiene
r 

NLM  WESN
R 

FMN-
3DW
T-C

pic002 30.13    30.65      29.41    29.66       32.33
pic029  21.96    22.29      22.12    21.36       24.19
pic059 19.55    19.82      19.91    13.90       21.96
pic084 17.10     17.65      17.72    11.84       20.02

 
SSIM 

Image Bilater
al 

Wiener NLM  WES
NR 

FMN-
3DW
T-C

pic002 0.983    0.986     0.981    0.981     0.990
pic029 0.627    0.647     0.641       0.697     0.799
pic059 0.501    0.521     0.529       0.428     0.667
pic084 0.640    0.671     0.678       0.458     0.802 

 
Table 3. PSNR and SSIM values obtained in denoising of 
multiplicative distortions for filters: Lee, Frost, Kuan, 
Anisotropic diffusion and proposed filter F-MNSR-DCT. 
 

 
 

 

5 Conclusion  

A novel filtering approach that has been employed in 
suppressing a mixture of additive-impulsive noises and 
in multiplicative denoising is presented. The 
experimental results demonstrate that our method 
exhibits better processing performance than state-of-the-
art techniques in suppressing mixed noise with varying 
texture characteristics and edges. Future work should be 
devoted to implementing the current filtering approach 
in video denoising. 
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Fig.7. Filtered and inverted error images for pic015 and pic001 in case of multiplicative noise ( =30,  =40), respectively for 
different algorithms: Lee, Frost, Kuan, Anisotropic diffusion and proposed F-MNSR-DCT. 
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